Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(30): e2301576, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37020177

RESUMO

Efficient electrochemical hydrogen production and biomass refinery are crucial for the decarbonization of various sectors. However, their energy-intensive nature and low efficiency have hindered their practical application. In this study, earth-abundant and non-toxic photocatalysts that can produce hydrogen and reform biomass efficiently, utilizing unlimited solar energy, are presented. The approach involves using low-bandgap Si flakes (SiF) for efficient light-harvesting, followed by modification with Ni-coordinated N-doped graphene quantum dots (Ni-NGQDs) to enable efficient and stable light-driven biomass reforming and hydrogen production. When using kraft lignin as a model biomass, SiF/Ni-NQGDs facilitate record-high hydrogen productivity at 14.2 mmol gcat -1  h-1 and vanillin yield of 147.1 mg glignin -1 under simulated sunlight without any buffering agent and sacrificial electron donors. SiF/Ni-NQGDs can be readily recycled without any noticeable performance degradation owing to the prevention of deactivation of Si via oxidation. This strategy provides valuable insights into the efficient utilization of solar energy and practical applications of electro-synthesis and biomass refinement.

2.
Nat Commun ; 13(1): 5709, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192405

RESUMO

Solar hydrogen production is one of the ultimate technologies needed to realize a carbon-neutral, sustainable society. However, an energy-intensive water oxidation half-reaction together with the poor performance of conventional inorganic photocatalysts have been big hurdles for practical solar hydrogen production. Here we present a photoelectrochemical cell with a record high photocurrent density of 19.8 mA cm-2 for hydrogen production by utilizing a high-performance organic-inorganic halide perovskite as a panchromatic absorber and lignocellulosic biomass as an alternative source of electrons working at lower potentials. In addition, value-added chemicals such as vanillin and acetovanillone are produced via the selective depolymerization of lignin in lignocellulosic biomass while cellulose remains close to intact for further utilization. This study paves the way to improve solar hydrogen productivity and simultaneously realize the effective use of lignocellulosic biomass.


Assuntos
Celulose , Lignina , Biomassa , Compostos de Cálcio , Carbono , Hidrogênio , Óxidos , Titânio , Água
3.
Nanoscale ; 13(48): 20374-20386, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34731231

RESUMO

Electrochemistry could play a critical role in the transition to a more sustainable society by enabling the carbon-neutral production and use of various chemicals as well as efficient use of renewable energy resources. A prerequisite for the practical application of various electrochemical energy conversion and storage technologies is the development of efficient and robust electrocatalysts. Recently, molecularly designed heterogeneous catalysts have drawn great attention because they combine the advantages of both heterogeneous solid and homogeneous molecular catalysts. In particular, recently emerged metal-phenolic networks (MPNs) show promise as electrocatalysts for various electrochemical reactions owing to their unique features. They can be easily synthesized under mild conditions, making them eco-friendly, form uniform and conformal thin films on various kinds of substrates, accommodate various metal ions in a single-atom manner, and have excellent charge-transfer ability. In this minireview, we summarize the development of various MPN-based electrocatalysts for diverse electrochemical reactions, such as the hydrogen evolution reaction, the oxygen evolution reaction, the CO2 reduction reaction, and the N2 reduction reaction. We believe that this article provides insight into molecularly designable heterogeneous electrocatalysts based on MPNs and guidelines for broadening the applications of MPNs as electrocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...